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An Analytic Expression for the First Shell of the 
Radial Distribution Function 
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A simple analytical expression fi~r the Iirst shell of the radial distribution func- 
tion I RDV) is proposed. This expression, which has only three adjustable 
parameters, satislics all the limiting cases of the hard-sphere RDV at high 
temperatures, the ideal gas RDF tit z.gro density, the dilute-gas RDF tit low 
densities, and the location of the peak in the first shell. The only requirement 
is the introduction of a potential ftmction into the model. This theory has been 
applied to the Lcnnard Jones, Kihara. and square-well pair intermolecular 
potential energy functions. The first-shall RDI: results arc in good agreement 
with the axailablc computer simulation data for the RDF of the Lennard Jones 
fluid and the experimental data for argon. By introducing the radius of trunca- 
tion for the RDV, it is shown that inl'ormation on the first shell of the RI)I- is 
sull]cient to predict macroscopic properties of Iluids. Calculations of radii of 
lrl.lncation OJ" RDF for various prol-~crties indicate that Ihey tire always in the 
rallgC of the firs! shell of RI)I". 

KEY WORDS:  Kihara potential: I.ennard Jones potential: radial distribution 
function: thernaodynamic properties. 

1. I N T R O D U C T I O N  

The radial distribution function (RDF)  is the most informative feature of 
the structure of a substance. It represents the probability of  finding a 
molecule at a specified distance from an arbitrary central molecule and is 
denoted g(r), r being the distance between molecules. In practice, we may 
think of  pg(r) as a representation of the local density of  molecules in equi- 
librium at any distance r from the central molecule (p being the bulk den- 
sity of  the substance expressed as number of  molecules per unit volume). 
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In the canonical ensemble, the radial distribution (pair correlation) func- 
tion for a pure substance is defined as follows: 

g i / ( r , p , T ) = V 2 ( 1 - f i ( f f N i ) / Q c ( T ,  V , N )  f . . .  f e  4 ' / krdr3 . . .dru  (1) 

where Tis the absolute temperature, Vis the volume, r is the position vector, 
is the intermolecular potential energy function, 8ij is the Kronecker delta, 

k is Boltzmann's constant, N is the number of molecules, and Qc is the 
configurational integral which can be represented by the following equation: 

Q~(T, V , N ) = f  . . .  f e-4'/krdrt . . . d r  N (2) 

By using RDF, it is possible to calculate equilibrium properties (the 
isothermal compressibility, pressure, and internal energy) of a substance. 
The expressions for obtaining isothermal compressibility (h'r), pressure (P), 
and internal energy (U) are 

~ r = - ( 1/r/)(O V/OP) r = (1/p)(Op/OP) r 

= l l ( p k T ) + 4 n / ( k T )  [ g ( r ) -  I]  r2dr (3) 

P = p k T -  (2rcp2/3) g(r) O'(r) r 3 dr (4) 

fO ~ U =  Uig + 2Nrep g(r) c/)(r) r 2 dr (5) 

where Uig is the ideal-gas internal energy. 
In order to make these relationships dimensionless, we define p* ---pry 3, 

T* =- k T/e, P* - P~3/e, U* - ( U -  Uig)/( Ne), x*  - K re/tr 3, andy  - r/tr. g and 
e are the diameter and energy parameters of the potential energy function, 
respectively. 

x * = l / ( p * T * ) + ( 4 ~ z / T * )  [ g ( y ) -  1] y'-dy (6) 

P * = p * T * - [ 2 7 t * 2 / ( 3 e ) ]  g(y)  ~ ' (y)  y3dy  (7) 

fO ~�84 U* = (2~zp*/e) g(y)  (b(y) y2 dy (8) 
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In this work, we have proposed a simple expression which can be used 
to predict the first shell of RDF of fluids with known intermolecular poten- 
tial functions. It is shown that the first shell of RDF is the only information 
necessary in determining the equilibrium properties of substances. Hanley 
and Evans [ 1 ] and Mansoori and Ely [2] showed that the thermodynamic 
properties can be completely determined by interactions of relatively short 
range. Hanley and Evans could reproduce the experimental data using a 
distance of approximately 2.5 molecular diameter in their calculations for 
dense soft spheres. Here, it is determined that this distance (the radius of 
truncation of RDF) is a function of temperature and density, from which 
pressure, internal energy, and isothermal compressibility are calculated. 

2. DEVELOPMENT OF AN ANALYTIC EXPRESSION FOR THE 
FIRST S H E L L  O F  T H E  R D F  

The limiting conditions that the radial distribution function has to 
satisfy are as follows. 

(i) The case of an ideal gas, where RDF approaches unity. 

(ii) The case of a dilute gas (dg), in which the RDF is represented 
by the following equation: 

gag(Y) = exp[ -fl~b(y) ] (9) 

where fl = 1/(kT). 
(iii) The high-temperature limit, where the RDF can be represented 

by the hard-sphere RDF as derived by Wertheim's analytic 
expression [ 3 ]. 

(iv) The limit of zero molecular distance, where the RDF approaches 
zero. 

(v) The limit of infinite distance between two molecules, where the 
RDF approaches unity. 

We propose the following functional form for the first shell of the 
radial distribution function of fluids which possesses the correct shape of 
the first shell: 

g(y) = m,gh.~(1)exp[ --m2flr ] + (1 --rnt)exp[ - -m2f l • (y ) - -c l (y - -d*)  ] 

for O<.y<.d* (10) 

g(y) =mlghs(X ) + (1 --ml) exp[ --m2flc~(y) -- c2(y - d * ) ]  

for d * < y < y m  (11) 
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where x =- r/d, d is defined as the location of the maximum of the first shell, 
d * =  - d/a,  3,,, is the location of the minimum in the RDF at the end of the 
first peak, gh , ( x )  is the first-shell hard-sphere RDF as derived by Wertheim 
and given in the Appendix, and g,~(1) is the hard-sphere RDF at the 
contact. 

It should be also pointed out that the two parts of g(y)  for the first 
shell as given by Eqs. (10) and ( 11 ) converge to the following simple equation 
at the maximum of the first peak of the RDF (at y = d * ) :  

g(d* ) = m~ gh~( 1 ) + ( 1 - ill ~ ) exp [ - m 2 flq~(d* ) ] (12) 

The parameters c~ and c 2 appearing in Eqs. (I0) and (11) must be 
determined so that g(y) will have a maximum at distance d*, i.e., 

[ 8g( j , ) /8.v ] ,  = ,,. = o 

With this condition, the following analytic expressions for Cl and c, will result: 

Cl = -mlm2fl~b'(1) gh~(1) /{d*(1  --ml ) exp[ -mzfl(b(d*)]  } 

- m 2 f l ~ ' ( d * )  (13) 

c ,  = m l g ' ~ , ~ ( l ) / { d * ( l  - m l  ) exp[ -m2flq~(d*)] } - m 2 f l ~ ' ( d * )  (14) 

~b'(1) and g'h~(1) are derivatives of the potential function and the RDF at 
contact, respectively. The expression for g',.,(1) is derived and reported in 
the Appendix based on Wertheim's hard-sphere RDF at contact. 

In order to satisfy the limiting conditions imposed on the RDF due to 
temperature and density variations (conditions i, ii, and iii) and to possess 
the correct temperature and density dependencies, the parameters d*, m I, 
and m~ in the above equations are expressed as functions of the reduced 
temperature, T*, and the reduced density, p*, as indicated below: 

d* = R,n exp( - ~1P *2T*~ (15) 

m I = e x p [ - ~ 2 / ( p * T * ) ]  (16) 

m2 =exp[~3p*(1 - I /T * ) ]  (17) 

where ~ ,  ~.2, and ~ are adjustable parameters and R,,, is the location of the 
dilute-gas RDF peak. Considering that Eq. (9) expresses the dilute-gas RDF, 
the parameter R,,, can be calculated using the condition [0 exp[ - f l~b(y) ] /  
c~y],_ ~,,, = 0, which will be reduced to the tbllowing expression: 

[8~( v)/0v].,. ~,% = ~ ' (y  = R, , , )=0 (18) 
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According to Eq. (16), as the temperature approaches infinity, the 
parameter Jnt becomes unity. Substituting m~ = 1 into Eq. (1 l ), it reduces 
to gh~(x), which is the limiting case of the hard-sphere RDF. For the case 
where the density is very low, according to Eqs. ( 13)-( 18 ), m ~ = c ~ = c2 = 0 
and m , =  1. Therefore, Eqs. (10) and (11) reduce to Eq. (9), which is the 
dilute-gas RDF. 

Equations (10) and (11), when joined with the expressions for c~, c_~, 
d*, m~, and m2 given by Eqs. (13)-(18), can be used for the calculation of 
the first shell of RDF of simple fluids with known potential energy functions. 
In what follows, we apply these analytic expressions for the calculation of 
the first shell of RDF of various potential energy functions. As will be shown, 
we are able to correlate all the available simulation and experimental first- 
shell RDF data of simple fluids by these expressions. It should be pointed 
out that the three adjustable parameters ~ ,  ~_~, and {3 are dimensionless 
and they remain constant for any simple fluid. 

3. A P P L I C A T I O N  TO V A R I O U S  POTENTIAL ENERGY 
F U N C T I O N S  

3.1. The Lennard-Jones Potential Function 

The Lennard-Jones potential function, which has been widely studied 
in statistical mechanics, is one of the simplest model potential functions 
representing both the repulsive and attractive features of a real simple sub- 
stance. Several investigators have attempted to fit simulation data for the 
Lennard-Jones fluid to analytical expressions. Goldman [4]  proposed an 
expression with 108 adjustable parameters for the RDF of pure Lennard-  
Jones fluids and was able to reproduce Verlet's simulation data [5] .  
Recently, Matteoli and Mansoori [6]  presented expressions for the Lennard- 
Jones RDF which require 21 parameters. 

The analytical equations, Eqs. (10) and (11), presented in this report 
for the first shell of RDF have only three adjustable parameters. In the case 
of the Lennard-Jones fluid ~b(y), ~b(x), qb(d*), ~b'(d*), ~b'(1), and R,, 
appearing in Eqs. (10)-(15) are as indicated below: 

~b(),) = 4e( 1/3 ,12 - 1/y ' )  

~b(x) = 4e( 1/x t2 - 1/x ~') 

~ ( d * )  = 48( 1/d* .2 _ 1/d,~,) 

~b'(d* ) = - (24e/d*)(2/d* t-" - 1/d *~') 

~b'( 1 ) = - 24e 

Rm = 2 t 6 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 
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Fig. 1. Comparison of the proposed model lbr the first shell of 
the RDF and the simulation data obtained by Verlet [5] at 
p* =0.85 and T*=0.719. 

The only adjustable parameters, ~ ,  ~2, and ~3, in Eqs. (15)-(17) have 
been obtained by fitting the 25 set of molecular dynamic simulation data 
reported by Verlet [5 ]  for the first shell of RDF. 

~t = 0.0483, ~2 = 4.930, ~3 = 0.680 

Figures 1 to 4 represent comparisons between the simulation data of 
Verlet and the calculated RDF based on the proposed model at different 
T* and p* values. According to these figures the proposed model yields 
good agreement with the simulated data. 
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Fig. 2. Comparison of the proposed model for the first shell of 
the RDF and the simulation data obtained by Verlet [5] at 
p* =0.75 and T* = 1.304. 
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Fig. 3. Comparison of the proposed model for the first shell of 
the RDF and the simulation data obtained by Verlet [5]  at 

p* =0.65 and T* = 1.584. 
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Yarnell et al. [7] obtained the radial distribution function of liquid 
argon at 85 K from neutron scattering measurements. Later Soper I-8] 
reevaluated the radial distribution of argon, which was quite close to the 
measured RDF data of Yarnell et al. [7]. In Fig. 5, we compare the first- 
shell RDF data of argon measured by Yarnell et al. 1-7] with the proposed 
g(r) model using the Lennard-Jones parameters a=3.405 /~ and e/k= 
119.8 K determined by Levelt [9]. According to this figure, there is a good 
agreement between the calculations and the experimental data. A similar 
comparison can be made using the argon Lennard-Jones potential 
parameters or= 3.400 ,~ and elk= 116.8 K determined by Boublik [ 10]. 

2- 

>" 1 v 

q 

0 __-.....,.....~ 
0 

p'= 0.45 
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- Proposed Eq. 

2 3 4 5 

Y 

Fig, 4. Comparison of the proposed model for the first shell of 

the RDF and the simulation data obtained by Verlet [5]  at 

p* = 0.45 and T* = 2.934. 
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Fig. 5. Compar i son  of the proposed model based on the I..I 
potential function and Ihe experimental RDF tor dl'gon ;.ll. t~5 K 
by Yarncll ct al. [7 ] .  

However.  the difference is not so noticeable in the graphical representations 
using the two sets of  potential  parameters.  

3.2 .  T h e  K i h a r a  P o t e n t i a l  F u n c t i o n  

The Kihara  potential function is a more  realistic pair-potential  model 
tbr lluids than the genna rd  Jones potential function to account  for the 
intermolecular  forces. It is assumed that each molecule has an impenetrable 
hard convex core which depends on the shortest distance between the two 
molecules. In the special case where the intermolecular  orientat ion is of  no 
importance,  the core is a sphere with diameter  c5. In order to apply the 
proposed first-shell R D F  model to the Kihara  potential,  we can derive the 
tbllowing expressions for cb(y), q~(x), q~(d*), q~'(d*), ~,b'(1), and R., 

q~(y) = 4e{ [ ( 1 - f i * ) / ( y - 6 * ) ] ' 2 - [ ( 1 -  cS*) / (y -  6" ) ] "}  (25 

$(x) = 4e{ [( 1 - ~*/d* )/(x - d*/d*)  ] t~ 

- [ (  1 - 3*/d* ) / ( x  - 6*/d* ) ] " }  ( 2 6 )  

~b(d*) = 4e{ [(1 - d * ) / ( d * - ~ 5 * ) ] " - [ ( 1  - g * ) / ( d * - c ~ * ) ]  ~' (27) 

$ ' ( d*  ) = [ - 24~/(d* - ~* )] { 2[(  1 - ~* J/(d* - 6" )] ~2 

- [ / 1  - 6*l/iJ* - 6 " ) ]  ~'} 128 

~b'( 1 ) = - 24e/( 1 - 6*/d* ) ( 29 

R., = 6" + 21 ~'(1 - 3 * )  (30 
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Kihara potential parameters  in RcI~ II and the experimental 
R I ) F "  l b r  argon at 85 K by Yarncll ct al. [7] .  
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where ~*=~5/~. The parameters ~,,  ~2, and g3 in Eqs. (15) to (17) are 
assumed to have the same values as in the Lennard Jones case. 

Figure 6 represents comparisons between the experimental RDF of 
liquid argon at 85 K determined by Yarnell et al. [7 ]  and the proposed 
g(r) obtained by using the Kihara parameters [11] ,  o'=3.314 A, e/k= 
146.52 K, and (5 = 0.121 A. The agreement of the experimental data and the 
calculated RDF depends on the choice o1" the potential parameters. If the 
Kihara potential parameters 0" = 3.344 A, e/k = 143.26 K, and ~ = 0.334 A 
reported by Tee et al. [ 12] are used in the proposed RDF, as in Fig. 7, we 
find a better agreement with the experimental data of Yarnell et al. [7 ] .  
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FiR. 7. Compar ison of the proposed model based oll the 

Kihara potential panm~eters in Rel: 12 and  the  e x p e r i m e n t a l  

RI)F  for aroon at 85 K by Yarnell et al. [7] .  

:-;4o Is 5-11 
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In comparing this figure with Fig. 5 in which the same experimental data 
were compared with the first-shell Lennard-Jones model calculation, we 
conclude that the Kihara potential complies better with the proposed 
model for argon. 

3.3. T h e  S q u a r e - W e l l  Potent ia l  F u n c t i o n  

The square-well potential function also has both repulsive and attractive 
forces. 

~,b(y) = o � 9  for y < 1 

~ b ( ) , ) = - e  for 1 < ) , < 2  (31) 

~b(y) = 0 for 2 < y  

g(Y) 
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Fig. 8. Comparison between the proposed RDF 
using the square-well potential function (solid lines) 
and the Monte Carlo simulation data [13] for 
2 = 1.5 (filled circles). 
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where 2 is the attractive diameter which represents the width of the well. 
We may assume the following simple expression for the first shell of the 
radial distribution function of the square-well model, which satisfies all the 
limiting conditions imposed on it: 

g ( y ) = m l g h s ( X ) + ( 1 - - m ~ ) e x p ( m 2 / T * )  for l < y < 2  (32) 

where x - y / d * ,  d * = l ,  m t = e x p [ - ~ 2 / ( p * T * ) ] ,  and mz=exp[~3p* 
(I - l/T*)]. The adjustable parameters ~,_ and ~3 are determined by fitting 
Eq. (32) to the available Monte Carlo simulation data [13], which is for 
2=  1.5. 

~2 = 0.142, ~3 = 1.675 

Figure 8 represents comparisons between all the Monte Carlo simulation 
data and the proposed RDF that is obtained by using the square-well 
potential function. Although the square-well first shell RDF is simpler than 
the Lennard-Jones and Kihara first-shell RDFs, the results of the proposed 
method for the square well are not as good as those of the Lennard-Jones 
and Kihara. 

4. S U F F I C I E N C Y  OF T H E  FIRST S H E L L  OF THE R D F  IN  
PROPERTY CALCULATIONS 

In this report, we examine the sufficiency of the first shell for the 
calculation of thermodynamic properties. In doing so, we utilize the simula- 
tion data, which include isothermal compressibility, pressure, and internal 
energy, for the Lennard-Jones fluid to calculate the distance at which the 
RDF could be truncated. In all cases studied, it is shown that the radius 
of truncation is located inside the first shell of the RDF. 

4.1. Isothermal Compressibility 

To calculate the isothermal compressibility using the RDF, we 
demonstrate here that the information on the first shell of RDF is sufficient. 
In order to express the isothermal compressibility using only the first shell 
of the RDF, we introduce R~., the radius of truncation of the RDF. The 
integral in Eq. (6) can be written in the following form: 

Io [ g ( Y ) 1 ] y ~ - d Y = I o  ~ t - - [ g ( y ) - l ] y ' - d y +  ~ [g(y) 1 ]y2dy  (33) 
R^. 



1228 Touba and Mansoori 

R~. can be chosen such that the second integral in Eq. (33) disappears, i.e., 

I~ [g( . l ' ) -  1] 1,2dr=0 (34) 

In general, Eq. (34) has several roots for R~. However, we impose the 
constraint that R,, has to be within the first shell of RDF. Figure 9 
represents schematically the value of R,. which gives rise to the equality of 
dashed areas above and below the horizontal axis to the right of R,,.. Since 
g(y) is a function of temperature and density, R,. is also a function of 
temperature and density. 

Considering Eq. (34), we substitute Eq. (33) into Eq. (6). 

~*= l/(p*T*)+(4~z/T*) [g (y ) - -  1] .1,2 dy 

lit R~ y2 3 ] =I/(p*T*)+(4~/T*). ,  g(y) d y - R J 3  (35) 

In order to obtain R~., we have derived the isothermal compressibility 
from the simulation data of the Lennard-Jones fluid through the correlation 
proposed by Johnson et al. [ 14]. Their correlation is considered to be quite 
accurate for pressure calculations. However, its accuracy for isothermal 
compressibility cannot be investigated due to the lack of simulation data. 
Variations of R,. with density and temperature are illustrated in Fig. 10. 
According to this figure, for all the temperatures and densities for which the 

- i1 \ 1 

o 1 

Fig. 9. Radius of truncation R~. for the isothernlal com- 
pressibility integral [ g  v ) -  1 ] y2. 
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Fig. 10. Variations of the radius of truncation R~ with 
temperature and density for Lennard Jones Iluids. 

correlation by Johnson et al. [ 14] is valid, the radius of truncation of RDF 
is within the first shell. 

4.2. Pressure 

The same procedure as for R~. can be applied for pressure to find the 
radius of truncation of the radial distribution function, Rp, for pressure 
calculations. The integral in Eq. (7) can be split as follows: 

=,. flRi, f z f, g()')qb'()') y3 dy= g(),)4'()') y3 dy-F ~'()') y3 dy 
) ) Rp 

+ [ g ( ) , ) -  1] ~b'(),) 3. '3 dy (36) 
Rp 

Rp iS chosen such that the last integral in Eq. (36) vanishes, i.e., 

f J - 1] ~)'(),).l '3 d y = 0  (37) [ g ( ) , )  
Rp 

Figure 11 depicts how the equal areas above and below the horizontal axis 
to the right of Rp cancel each other. 
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Radius of truncation Rv for pressure integrand 
[gl y l -  I ] 4/ly)y3. 

Considering Eq. (37) and applying the Lennard-Jones potential function, 
we get the following equation for pressure: 

P* = p ' T *  = 16rip .2 , g(y)(2/y ' ~  l ty 4) d y +  2/(9R'~,)- 1/(3R~} (38) 

In order to calculate Rp, we have utilized the correlation proposed by 
Johnson et al. [14] and the Lennard-Jones fluid simulation data for 
pressure as given by Verlet [15]. Figure 12 and Table I show how Rp 
changes with the density and temperature. According to Fig. 12 and 
Table I, the radii of truncation of the RDF are within the first shell for all 
the temperatures and densities reported. 

4.3. Internal Energy 

In the case of the internal energy, the integral in Eq. (8) is written as 

g( y) ~(y) y'- dy = g(y) ~(),) ),2 dy + q~(y) 3, 2 dy 
) U 

+ [ g ( y ) -  I] ~b(y) ),2 dy (39) 
R I , 
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Table 1. Calculated Radii of Truncation, R~, and Rtj, versus p* and T* from Simulated 
Data Ibr Pressure and Internal Energy" 

p* T* R,, Rt, 

0.880 1.095 0.9145 1.1405 

0.880 0.940 0.9222 1.1475 
0.880 0.591 0.9422 1.1957 
0.850 2.889 0.8778 1.0703 
0.850 2.202 0.8895 1.1062 
0.850 1.214 0.9154 1.1712 

0.850 1.128 0.9189 1.1741 
0.850 0.880 0.9303 1.1744 

0.850 0.782 0.9356 1.1740 
0.850 0.786 0.9355 1.1757 
0.850 0.760 0.9370 1.1749 
0.850 0.719 0.9400 1.1761 
0.850 0.658 0.9435 1.1781 
0.850 0.591 0.9495 1.1814 
0.750 2.849 0.8913 1.1106 

0.750 1.304 0.9280 1.1900 
0.750 1.069 0.9371 1.1826 
0.750 1.071 0.9372 1.1797 
0.750 0.881 0.9476 1.1717 
0.750 0.827 0.9517 1.1730 

0.650 2.557 0.9082 1.1625 
0.650 1.585 0.9322 1.1975 

0.650 1.036 0.9535 1.1747 
0.650 0.900 0.9612 1.1684 
0.550 2.645 0.9176 1.1967 
0.543 3.260 0.9059 1.1563 
0.543 1.404 0.9480 1.1970 
0.543 1.326 0.9511 1.1922 
0.500 1.360 0.8969 1.1998 
0.450 4.625 0.8997 1.0912 
0.450 2.935 0.9231 1.2086 
0.450 1.744 0.9499 1.2126 

0.450 1.764 0.9492 1.2116 
0.450 1.710 0.9493 1.2290 
0.450 1.552 0.9462 1.2124 
0.400 1.462 0.9644 1.2266 
0.400 1.424 0.9646 1.2229 
0.350 1.620 0.9635 1.2248 
0.350 1.418 0.9694 1.1560 

" From Reg. 15. 
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In the same way as lbr the isothermal compressibility and pressure, RIj is 
chosen such that the last integral in Eq. (39) disappears, i.e., 

ix {g(Y)- I] ~b(y)y2dy=O (40) 

Figure 13 presents schematically the preceding integral and the equality of 
areas above and below the horizontal axis to the right of Ru. 

Applying the Lennard-Jones potential function, we conclude that 

t J'RI' t U*=8rcp* ,, g ( y ) ( l l y ~ " - l / ) , ' ~ ) d y + l / ( 9 R ' ~ j ) - - l / ( 3 R ~ , )  (41) 

In order to determine R u, we have used the correlation of Johnson et al. 
[14] and the internal energy data of Verlet [15]. Variations of Rp with 
density and temperature are illustrated in Fig. 14 and in Table I. According 
to Fig. 14 and Table I, for all the temperatures and densities reported, the 
radius of truncation of the RDF for internal energy calculation is within 
the first shell. 

1.4 
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�9 T" :3.0 

T '=40 
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p* 

F ig .  14. V a r i a t i o n s  o f  l he  r a d i u s  o f  t r u n c a t i o n  

Rt~ with temperature and density for Lcnnard 
Joncs lluids. 



1234 Touba and Mansoori 

5. C O N C L U S I O N  

We have presented a simple model for determining the first shell of the 
RDF provided the potential energy function is known. The proposed 
model conforms to the limiting cases of ideal gas, dilute gas, and the 
hard-sphere limit. It also has an appropriate temperature and density 
dependence which satisfies all the related variations of the first-shell RDF. 
It has three adjustable parameters which have to be determined from the 
simulation or experimental RDF first-shell data. The present model is 
tested versus the first-shell RDF data for the Lennard-Jones,  Kihara, and 
square-well fluids. Moreover, the proposed model is tested versus the 
experimental results for the argon RDF. Good agreement was obtained in 
most of the cases studied over a broad range of density and temperature. 
In order to express the significance of the first shell of the RDF, we have 
examined the sufficiency of the first shell of RDF for thermodynamic 
property calculations. It is shown that, for all the available simulated 
Lennard-Jones fluid data, the radius of truncation of the RDF is located 
within the first shell. As demonstrated by Figs. 10-14 and discussed above 
for calculating internal energy, pressure, and isothermal compressibility, 
the radius of truncation of the RDF is always located inside the first shell 
of the RDF. This indicates that for thermodynamic property calculations 
which start with the radial distribution function, information on the first 
shell of the RDF seems to be sufficient. 

APPENDIX: HARD-SPHERE RADIAL DISTRIBUTION FUNCTION 

Wertheim's analytical solution of the Percus-Yevick equation for the 
first shell of the hard-sphere radial distribution function [3]  is 

gh.~(x) = [(H0 + Hi + H2) exp(Ai) 

+2exp(Aa)(DicosA-,-D2sinA2)]/[3x(l-q)" ] (A1) 

where r/=~rp d3/6 is the dimensionless density or packing fraction, and 
parameters A~, A2, A3, Dr, D2, Ho, Ht, and H_, are defined as follows: 

At=[2J1/(1--rl)](x--1)(- l+x+ +x ) 

A2= [2q/(1 - r / ) ] ( x -  1)(3'/2/2)(x+ - x  ) 

A 3 = [ 2r//( 1 -- r/) ] (x  -- 1)[ -- 1 -- 0.5(x + + x _ )] 

(A2) 

(A3) 

(A4) 
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Di = Ho - 0.5(Hi + H , )  (A5) 

D ,  = (3 ' /2/2)(H, - H2) (A6) 

Ho = 1 + 0.5r/ (A7) 

H ,  = - Ix2_(1 - 3 q - 4 q e ) + x + ( 1  - 2 . 5 q 2 ) ] / [ 4 q ( f 2 + ~ )  t'2] (A8) 

H2 = [ x + ( 1  - 3 q - 4 q 2 ) + x _ ( 1  - 2 .5q2)] /[4r /(f2 + �89 '/-" ] (A9) 

f,  x + ,  and x in the preceding equat ions are defined as 

f =  (3 + 3J 1 - qz)/4q'- (AI0)  

x+ = [ f  + ( f 2  + �89 ( A l l )  

x _  = [ f - ( f 2  + {) , /2] ,3 (AI2)  

In the case where x =  1 (or r = d ) ,  Eq. (AI)  reduces to 

gh.,( 1 ) = ( 1 - q/2)/( 1 - r/) 2 (A13) 

The  m a x i m u m  of the hard-sphere  R D F  at r =  d (or  x = 1) can be obta ined 
by taking the derivative of  Eq. (A1) with respect to x. 

g',,,( 1 ) = - 4 . 5 ~ ( l  + q ) / (  1 - q ) 3  (AI4) 
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