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An Analytic Expression for the First Shell of the
Radial Distribution Function
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A simple analytical expression for the first shell of the radial distribution func-
ton (RDF) is proposed. This expression. which has only three adjustable
parameters, satislics all the limiting cases of the hard-sphere RDF at high
temperatures, the ideal gas RDF au zero density, the dilute-gas RDF at low
densities. and the location of the peak in the first shell. The only requirement
is the introduction of a potential function into the model. This theory has been
applied to the Lennard: Jones, Kihara, and square-well pair intermolecular
potential encrgy functions. The first-shell RDIF results are in good agreement
with the available computer simulation data for the RDF ol the Lennard Jones
fluid and the experimental data for argon. By introducing the radius of trunca-
ton for the RDFE, it is shown that informaton on the first shell of the RDEF is
sulficient Lo predict macroscopic properties of Nuids. Caleulations of radii of
truncation of RDF for various properties indicate that they are always in the
range of the first shell of RDE.

KEY WORDS: Kihura potential: Lennard-Jones potential; radial distribution
function: thermodynamic propertics.

1. INTRODUCTION

The radial distribution function (RDF) is the most informative feature of
the structure of a substance. It represents the probability of finding a
molecule at a specified distance from an arbitrary central molecule and is
denoted g(r), r being the distance between molecules. In practice, we may
think of pg(r) as a representation of the local density of molecules in equi-
librium at any distance r from the central molecule (p being the bulk den-
sity of the substance expressed as number of molecules per unit volume).
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In the canonical ensemble, the radial distribution {pair correlation) func-
tion for a pure substance is defined as follows:

&ulr, p TV = VA1 =0, /N)/QUT, V,N) [ - [e #Tdrs - dry (1)

where T is the absolute temperature, Vis the volume, r is the position vector,
¢ is the intermolecular potential energy function, J; is the Kronecker delta,
k is Boltzmann’s constant, N is the number of molecules, and Q. is the
configurational integral which can be represented by the following equation:

QUT, V. N = oo [ero¥Tdr, . dry 2)

By using RDF, it is possible to calculate equilibrium properties (the
isothermal compressibility, pressure, and internal energy) of a substance.
The expressions for obtaining isothermal compressibility (x ), pressure {P),
and internal energy (U) are

kr= —(1/V)(@V/OP)r=(1/p)(0p/0P)

— 1/(pkT) + 4/(kT) L [g(r)—1]12dr (3)
P=pkT—(2np*3) [ " g(r) ¢'(r) P dr (4)
U=U,+2Nnp JI g(r) ¢(r) r* dr (5)

[¢]

where U,, is the ideal-gas internal energy.

In order to make these relationships dimensionless, we define p* = pa*,
T*=kT/e, P* = Po’le, U*=(U — U,)/(Ne), k¥ =k r¢/o”, and y =r/o. 0 and
¢ are the diameter and energy parameters of the potential energy function,
respectively.

K3=1p*T*)+ (/T [ (20 =11 5" dy (6)
Pr=p Tt = 220300 [ e #(0) ™)
U* = (2np*/e) J: g(y)d(y) y*dy (8)
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In this work, we have proposed a simple expression which can be used
to predict the first shell of RDF of fluids with known intermolecular poten-
tial functions. It is shown that the first shell of RDF is the only information
necessary in determining the equilibrium properties of substances. Hanley
and Evans [ 1] and Mansoori and Ely [ 2] showed that the thermodynamic
properties can be completely determined by interactions of relatively short
range. Hanley and Evans could reproduce the experimental data using a
distance of approximately 2.5 molecular diameter in their calculations for
dense soft spheres. Here, it is determined that this distance (the radius of
truncation of RDF) is a function of temperature and density, from which
pressure, internal energy, and isothermal compressibility are calculated.

2. DEVELOPMENT OF AN ANALYTIC EXPRESSION FOR THE
FIRST SHELL OF THE RDF

The limiting conditions that the radial distribution function has to
satisfy are as follows.
(1) The case of an ideal gas, where RDF approaches unity.

(ii) The case of a dilute gas (dg), in which the RDF is represented
by the following equation:

gae(y) =exp[ —f¢(y)] €

where f=1/(kT).

(iii) The high-temperature limit, where the RDF can be represented
by the hard-sphere RDF as derived by Wertheim’s analytic
expression [3].

(iv) The limit of zero molecular distance, where the RDF approaches
Zero.

(v) The limit of infinite distance between two molecules, where the
RDF approaches unity.

We propose the following functional form for the first shell of the
radial distribution function of fluids which possesses the correct shape of
the first shell:

g(y)=m, g (1) exp[ —m,fd(x)] + (1 —m,) exp[ —m,f¢(y) —c\(y —d*)]
for 0gy<d* (10)
g(y)=m g (x)+ (1 —m,) exp[ —myBd(y) — co(y —d*)]
for d*<y<y,, (11)
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where x =r/d, d is defined as the location of the maximum of the first shell,
d*=djo, y,, is the location of the minimum in the RDF at the end of the
first peak, g, (x) is the first-shell hard-sphere RDF as derived by Wertheim
and given in the Appendix, and g,(1) i1s the hard-sphere RDF at the
contact.

It should be also pointed out that the two parts of g(y) for the first
shell as given by Egs. (10) and (11) converge to the following simple equation
at the maximum of the first peak of the RDF (at vy =d*):

gld*y=m, g, (1) + {1 —m)exp[ —m,fd(d*)] (12)

The parameters ¢, and ¢, appearing in Egs. (10) and (11) must be
determined so that g( y) will have a maximum at distance 4%, i.e.,

[Og(»)/ov],.ous=0

With this condition, the following analytic expressions for ¢, and ¢, will result:

¢ = —mmsfe'(1) gy (1) {d*(1 —m,) exp[ —m,f(d*)]}
— ' (d*) (13)
cs=m, g () d* (1 —m)exp[ —m-BHd*)]} —m,fe'(d*) (14)

¢'(1) and g} (1) are derivatives of the potential function and the RDF at
contact, respectively. The expression for g (1) is derived and reported in
the Appendix based on Wertheim’s hard-sphere RDF at contact.

In order to satisfy the limiting conditions imposed on the RDF due to
temperature and density variations (conditions 1, ii, and iii) and to possess
the correct temperature and density dependencies, the parameters d*, m,,
and m, in the above equations are expressed as functions of the reduced
temperature, 7%, and the reduced density, p*, as indicated below:

d* =R, exp( — & p* T*"%) (15)
my=exp[ =& /(p*T™*)] (16)
my=exp[&;p*(1-1/T*)] (17)

where &,, &, and &, are adjustable parameters and R, is the location of the
dilute-gas RDF peak. Considering that Eq. (9) expresses the dilute-gas RDF,
the parameter R,, can be calculated using the condition [0 exp[ —f¢(y)]/
dv], _ g, =0, which will be reduced to the following expression:

[0¢(v)/Oy], —k, =¢'(y=Ry)=0 (18)
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According to Eq. (16), as the temperature approaches infinity, the
parameter m, becomes unity. Substituting m; =1 into Eq. (11), it reduces
to g, x), which is the limiting case of the hard-sphere RDF. For the case
where the density is very low, according to Egs. (13)-(18), m,=¢,=¢,=0
and m- = 1. Therefore, Egs. (10) and (11) reduce to Eq. (9), which is the
dilute-gas RDF.

Equations (10) and (11), when joined with the expressions for ¢,, ¢,,
d*, m,, and m, given by Egs. (13)—(18), can be used for the calculation of
the first shell of RDF of simple fluids with known potential energy functions.
In what follows, we apply these analytic expressions for the calculation of
the first shell of RDF of various potential energy functions. As will be shown,
we are able to correlate all the available simulation and experimental first-
shell RDF data of simple fluids by these expressions. It should be pointed
out that the three adjustable parameters &,, &., and &; are dimensionless
and they remain constant for any simple fluid.

3. APPLICATION TO VARIOUS POTENTIAL ENERGY
FUNCTIONS

3.1. The Lennard-Jones Potential Function

The Lennard-Jones potential function, which has been widely studied
in statistical mechanics, is one of the simplest model potential functions
representing both the repulsive and attractive features of a real simple sub-
stance. Several investigators have attempted to fit simulation data for the
Lennard—Jones fluid to analytical expressions. Goldman [4] proposed an
expression with 108 adjustable parameters for the RDF of pure Lennard-
Jones fluids and was able to reproduce Verlet’s simulation data [5].
Recently, Matteoli and Mansoori [ 6] presented expressions for the Lennard-
Jones RDF which require 21 parameters.

The analytical equations, Eqs. (10) and (11), presented in this report
for the first shell of RDF have only three adjustable parameters. In the case
of the Lennard-Jones fluid ¢(v), ¢(x), #(d*), ¢'(d*), ¢'(1), and R,
appearing in Egs. (10)~(15) are as indicated below:

P(y)=4e(1/y"? —1/¥*) (19)
¢(x)=4de(1/x'"* = 1/x%) (20)
dd*) =4de(1/d*"> —1/d*°) (21)
P (d*) = — (24e/d*)(2/d* "> — 1/d**) (22)
¢'(1)= —24¢ (23)
be (24)

R:

m

[§)
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Fig. 1. Comparison of the proposed model lor the first shell of

the RDF and the simulation data obtained by Verlet [5] at
p* =085 and T*=0.719.

The only adjustable parameters, &,, &,, and &;, in Egs. (15)—-(17) have

been obtained by fitting the 25 set of molecular dynamic simulation data
reported by Verlet [ 5] for the first shell of RDF.

£,=00483,  &,=4930, &, =0.680

Figures 1 to 4 represent comparisons between the simulation data of
Verlet and the calculated RDF based on the proposed model at different

T* and p* values. According to these figures the proposed model yields
good agreement with the simulated data.

3
p’ =075
T'=1304
L]
ZJ . Verlet data
—~ Proposed Eq.
2
[le]
14 R N
0 T T T T
0 1 2 3 4 5
y

Fig. 2. Comparison of the proposed model for the first shell of

the RDF and the simulation data obtained by Verlet [5] at
p*=0.75 and T*=1.304,
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Fig. 3. Comparison of the proposed model for the first shell of
the RDF and the simulation data obtained by Verlet [5] at
p* =065 and T*=1584.

Yarnell et al. [7] obtained the radial distribution function of liquid
argon at 85 K from neutron scattering measurements. Later Soper [8]
reevaluated the radial distribution of argon, which was quite close to the
measured RDF data of Yarnell et al. [7]. In Fig. 5, we compare the first-
shell RDF data of argon measured by Yarnell et al. [ 7] with the proposed
g(r) model using the Lennard-Jones parameters ¢ =3.405 A and ¢/k =
119.8 K determined by Levelt [9]. According to this figure, there is a good
agreement between the calculations and the experimental data. A similar
comparison can be made using the argon Lennard-Jones potential
parameters ¢ =3.400 A and ¢/k=116.8 K determined by Boublik [10].

2 »
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Fig. 4. Comparison of the proposed model for the first shell of
the RDF and the simulation data obtained by Verlet [5] at
p* =045 and T*=2934.
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Fig. 5. Comparison of the proposed model based on the LI
potential function and the experimental RDF for argon at 85 K
by Yarnell et al. [7].

However. the difference is not so noticeable in the graphical representations
using the two sets of potential parameters.

3.2. The Kihara Potential Function

The Kihara potential function is a more realistic pair-potential model
for fluids than the Lennard-Jones potential function to account for the
intermolecular forces. It 1s assumed that each molecule has an impenetrable
hard convex core which depends on the shortest distance between the two
molecules. In the special case where the intermolecular orientation 1s of no
importance, the core is a sphere with diameter J. In order to apply the
proposed first-shell RDF mode! to the Kihara potential, we can derive the
following expressions for ¢( v}, ¢(x), d(d*) ¢'(d*), ¢'(1). and R,,:

Py =4ef[(1=0%)/(y—o6%)]"" = [(1 =6*)/(y—3*)]°} (25)
P(x) =4e{[(1 —O*/d*)j(x — d*/d*)]"

— (1 =3*/d*)/(x — 6*/d*)]°} (26)
Pld*)=4de{[(1 —*)/(d* —3*)]" = [(1 =d*)[(d* = d*)]"}  (27)
@'(d*)=[ —24e/(d* —3*)]{2[(1 —S*)d* —0%)]""

—[(1=0*)(d*—5*)1°) (28)

¢'(1)= —24¢/(1 —o*/d*) (29)
R, =0*+2'°(1 — %) (30)

m
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Fig. 6. Comparison of the proposed model based on the
Kihara potential parameters in Rel. 11 and the experimental
RDF for argon at 85 K by Yarnell et al. [7].
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where 0* =J/6. The parameters ¢,, ¢.. and ¢, in Egs. (15) to (17) are

assumed to have the same values as in the Lennard-Jones case.

Figure 6 represents comparisons between the experimental RDF of
liquid argon at 85 K determined by Yarnell et al. [7] and the proposed
g(r) obtained by using the Kihara parameters [11], 0 =3.314 A, ¢/k=
146.52 K, and 0 =0.121 A. The agreement of the experimental data and the
calculated RDF depends on the choice of the potential parameters. If the
Kihara potential parameters o =3.344 A, ¢/k =143.26 K, and 6 =0.334 A
reported by Tee et al. [12] are used in the proposed RDF. as in Fig. 7, we
find a better agreement with the experimental data of Yarnell et al. [7].

84018 501
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Fig. 7. Comparison ol the proposed model based on the
Kihara potential parameters in Rel. 12 and the experimental
RDF for argon at 85 K by Yarnell et al. [7].
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In comparing this figure with Fig. 5 in which the same experimental data
were compared with the first-shell Lennard-Jones model calculation, we
conclude that the Kihara potential complies better with the proposed

model for argon.

3.3. The Square-Well Potential Function

The square-well potential function also has both repulsive and attractive

forces.

gly)

dy)=cw for y<l1
Hy)=—¢ for l<y<i
d(y)=0 for A<y

p’=05 T =20

M

p* =05 T =10

p =06 T =20

\

p°=06 T =10

15

Fig. 8. Comparison between the proposed RDF
using the square-well potential function (solid lines)
and the Monte Carlo simulation data [13] for
A= 1.5 (filled circles).

Touba and Mansoori
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where A is the attractive diameter which represents the width of the well.
We may assume the following simple expression for the first shell of the
radial distribution function of the square-well model, which satisfies all the
limiting conditions imposed on it:

g(yy=m g (x)+(1—m;)exp(m,/T*) for l<y<d (32)

where x=y/d*, d*=1, m =exp[ —&,/(p*T*)], and m,=exp[{sp*
(1 — 1/T*)]. The adjustable parameters &, and &, are determined by fitting
Eq. (32) to the available Monte Carlo simulation data [13], which is for
A=15.

,=0.142,  &,=1675

Figure 8 represents comparisons between all the Monte Carlo simulation
data and the proposed RDF that is obtained by using the square-well
potential function. Although the square-well first shell RDF is simpler than
the Lennard—-Jones and Kihara first-shell RDFs, the results of the proposed
method for the square well are not as good as those of the Lennard—-Jones
and Kihara.

4. SUFFICIENCY OF THE FIRST SHELL OF THE RDF IN
PROPERTY CALCULATIONS

In this report, we examine the sufficiency of the first shell for the
calculation of thermodynamic properties. In doing so, we utilize the simula-
tion data, which include isothermal compressibility, pressure, and internal
energy, for the Lennard-Jones fluid to calculate the distance at which the
RDF could be truncated. In all cases studied, it is shown that the radius
of truncation is located inside the first shell of the RDF.

4.1. Isothermal Compressibility

To calculate the isothermal compressibility using the RDF, we
demonstrate here that the information on the first shell of RDF is sufficient.
In order to express the isothermal compressibility using only the first shell
of the RDF, we introduce R,, the radius of truncation of the RDF. The
integral in Eq. (6) can be written in the following form:

o R, 5 o ”
[(len-11yrd= Ten-11rd+] lan-11yd (3
0 0 R,
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R, can be chosen such that the second integral in Eq. (33) disappears, i.e.,

[1 [g(»)—1] y*dv=0 (34)
'R

S

In general. Eq. (34) has several roots for R,. However, we impose the
constraint that R, has to be within the first shell of RDF. Figure 9
represents schematically the value of R, which gives rise to the equality of
dashed areas above and below the horizontal axis to the right of R, . Since
g{v) is a function of temperature and density, R,. is also a function of
temperature and density.

Considering Eq. (34), we substitute Eq. (33) into Eq. (6).

Rh
KE=1/p*T*) +@n/T*) [ " [2(3)— 1]y dy

R
=1/(p*T*)+ (4n/T*) { f ey Y dv—R/3 (35)
Y0

In order to obtain R,., we have derived the isothermal compressibility
from the simulation data of the Lennard-Jones fluid through the correlation
proposed by Johnson et al. [ 14]. Their correlation is considered to be quite
accurate for pressure calculations. However, its accuracy for isothermal
compressibility cannot be investigated due to the lack of simulation data.
Variations of R, with density and temperature are illustrated in Fig. 10.
According to this figure, for all the temperatures and densities for which the

% .0 .':\\§‘ :
Y

(=1
—
[
w

Fig. 9. Radius of truncation R, for the isothermal com-
pressibility integral [ g(y)—1] 32
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Fig. 10. Variations ol the radius of truncation R, with
temperature and density for Lennard-Jones [luids.

correlation by Johnson et al. [ 14] is valid, the radius of truncation of RDF
is within the first shell.

4.2. Pressure

The same procedure as for R, can be applied for pressure to find the
radius of truncation of the radial distribution function, Rp, for pressure
calculations. The integral in Eq. (7) can be split as follows:

x

PA RI‘ .
f gy)¢'(y) y'dy =J g(y)¢'(v) ¥'dy +f ¢'(y) yidy
0 0 Ry

+f e —-11¢0) vy (36)
Rp
R, is chosen such that the last integral in Eq. (36) vanishes, ie.,

[" et =11¢) ydy=0 (37)

R

Figure 11 depicts how the equal areas above and below the horizontal axis
to the right of R, cancel each other.
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Considering Eq. (37) and applying the Lennard—Jones potential function,
we get the following equation for pressure:

Ry
P*=p*T* = 16np*’ {j g2y — l/y“)dv+2/(9R‘f,)—1/(3R'?,)} (38)
4]

In order to calculate R, we have utilized the correlation proposed by
Johnson et al. [14] and the Lennard-Jones fluid simulation data for
pressure as given by Verlet [15]. Figure 12 and Table 1 show how R,
changes with the density and temperature. According to Fig. 12 and
Table 1, the radii of truncation of the RDF are within the first shell for all

the temperatures and densities reported.

4.3. Internal Energy

In the case of the internal energy, the integral in Eq. (8) is written as

EA Ry 5 F4 5
[" o yrdv=]" g0 () 32 dy+] 9(y) 7y
0 RU

0

[ Len =160y dy (39)

t
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Table 1. Calculated Radii of Truncation, R, and R, versus p* and 7* from Simulated

Data for Pressure and Internal Energy

p* T* R, Ry,
0.880 1.095 0.9145 1.1405
0.880 0.940 09222 1.1475
0.880 0.591 0.9422 1.1957
0.850 2.889 0.8778 1.0703
0.850 2202 0.8895 1.1062
0.850 1214 0.9154 11712
0.850 1.128 09189 1.1741
0.850 0.880 0.9303 1.1744
0.850 0.782 0.9356 1.1740
0.850 0.786 0.9355 1.1757
0.850 0.760 0.9370 1.1749
0.850 0.719 0.9400 1.1761
0.850 0.658 0.9435 1.1781
0.850 0.591 0.9495 1.1814
0.750 2.849 0.8913 1.1106
0.750 1.304 0.9280 1.1900
0.750 1.069 0.9371 1.1826
0.750 1.071 09372 1.1797
0.750 0.881 0.9476 (L1717
0.750 0.827 0.9517 1.1730
0.650 2557 0.9082 1.1625
0.650 1.585 0.9322 1.1975
0.650 1.036 0.9535 1.1747
0.650 0.900 0.9612 1.1684
0.550 2.645 09176 1.1967
0.543 3.260 0.9059 1.1563
0.543 1.404 0.9480 1.1970
0.543 1.326 0.9511 1.1922
0.500 1.360 0.8969 1.1998
0.450 4625 0.8997 1.0912
0.450 2935 0.9231 1.2086
0.450 1.744 0.9499 12126
0.450 1.764 0.9492 1.2116
0.450 1.710 0.9493 1.2290
0.450 1552 0.9462 12124
0.400 1.462 0.9644 1.2266
0.400 1.424 0.9646 1.2229
0.350 1.620 0.9635 1.2248
0.350 1418 0.9694 1.1560

“From Ref. 15.
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Fig. 12. Variations of the radius of truncation
R, with temperature and density for Lennard
Jones fluids.
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In the same way as for the isothermal compressibility and pressure, Ry, is
chosen such that the last integral in Eq. (39) disappears, i.e.,

L’ [e(y)—11¢(y) v dy=0 (40)
R0

Figure 13 presents schematically the preceding integral and the equality of
areas above and below the horizontal axis to the right of R,,.
Applying the Lennard-Jones potential function, we conclude that

~ Ry

U*:87zp*{J ‘g(_v)(l/y“'—1/}’4)(1)'+1/(9R}’J)—1/(3Rf1)} (41)

0

In order to determine R,;, we have used the correlation of Johnson et al.
[14] and the internal energy data of Verlet [15]. Variations of R, with
density and temperature are illustrated in Fig. 14 and in Table I. According
to Fig. 14 and Table 1, for all the temperatures and densities reported, the
radius of truncation of the RDF for internal energy calculation is within
the first shell.

14
-
-
-
-
-
134 T
T+
b
o 124
2Py
1.1
1 T T T
0 025 05 075 ]

Fig. 14. Variations of the radius of truncation
Ry, with temperature and density for Lennard
Jones fluids.



1234 Touba and Mansoori

5. CONCLUSION

We have presented a simple model for determining the first shell of the
RDF provided the potential energy function is known. The proposed
model conforms to the limiting cases of ideal gas, dilute gas, and the
hard-sphere limit. It also has an appropriate temperature and density
dependence which satisfies all the related variations of the first-shell RDF.
It has three adjustable parameters which have to be determined from the
simulation or experimental RDF first-shell data. The present model is
tested versus the first-shell RDF data for the Lennard-Jones, Kihara, and
square-well fluids. Moreover, the proposed model is tested versus the
experimental results for the argon RDF. Good agreement was obtained in
most of the cases studied over a broad range of density and temperature.
In order to express the significance of the first shell of the RDF, we have
examined the sufficiency of the first shell of RDF for thermodynamic
property calculations. It is shown that, for all the available simulated
Lennard-Jones fluid data, the radius of truncation of the RDF is located
within the first shell. As demonstrated by Figs. 10-14 and discussed above
for calculating internal energy, pressure, and isothermal compressibility,
the radius of truncation of the RDF is always located inside the first shell
of the RDF. This indicates that for thermodynamic property calculations
which start with the radial distribution function, information on the first
shell of the RDF seems to be sufficient.

APPENDIX: HARD-SPHERE RADIAL DISTRIBUTION FUNCTION

Wertheim’s analytical solution of the Percus-Yevick equation for the
first shell of the hard-sphere radial distribution function [3] is

gns(x)=[(Ho+ H, + H,)exp(4,)

+2exp(A;)(D, cos A4, — D, sin 4,)1/[3x(1 —n)*1  (Al)

where y=np d’/6 is the dimensionless density or packing fraction, and
parameters 4,, A,, 45, D\, D,, H,, H,, and H, are defined as follows:

Ai=[2n/(1 =M x—1)(=1+x, +x) (A2)

Ay=[2n/(1=m1(x=1)3"*/2)(x, —x ) (A3)

A;=[2n/(1 =m](x=D[—1-05(x, +x_)] (A4)
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D,=H,—05(H, +H,) (AS)
D,=(3"2)2)(H, - H,) (A6)
Hy=1405y (A7)
Hi = —[x1(1=3n—4p*) + x (1 =257")1/[4n(f* + ) "] (A8)
Hy=[x%(1=3n—47") + x_(1=2.57")1/[4n(f* +§)'?] (A9)

f, x,,and x_ in the preceding equations are defined as

f=03+3—n/4n? (A10)
x,=[/+(+p'71"7 (All)
so=[f (S +H] (A12)

In the case where x=1 (or r=d), Eq. (Al) reduces to
g D) =(1—=n/2)/(1 —n)* (A13)

The maximum of the hard-sphere RDF at r=d (or x=1) can be obtained
by taking the derivative of Eq. (Al) with respect to x.

g =—457(1 +m/(1—n)? (A14)
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